Tuesday, October 8, 2019

These results suggest that genetic assortative mating (choosing those that are more like us) may be speeding up evolution in humans

Assortative Mating at Loci Under Recent Natural Selection in Humans. Akihiro Nishi et al. Biosystems, October 1 2019, 104040. https://doi.org/10.1016/j.biosystems.2019.104040

Abstract: Genetic correlation between mates at specific loci can greatly alter the evolutionary trajectory of a species. Genetic assortative mating has been documented in humans, but its existence beyond population stratification (shared ancestry) has been a matter of controversy. Here, we develop a method to measure assortative mating across the genome at 1,044,854 single-nucleotide polymorphisms (SNPs), controlling for population stratification and cohort-specific cryptic relatedness. Using data on 1,683 human couples from two data sources, we find evidence for both assortative and disassortative mating at specific, discernible loci throughout the entire genome. Then, using the composite of multiple signals (CMS) score, we also show that the group of SNPs exhibiting the most assortativity has been under stronger recent positive selection. Simulations using realistic inputs confirm that assortative mating might indeed affect changes in allele frequency over time. These results suggest that genetic assortative mating may be speeding up evolution in humans.

No comments:

Post a Comment